A genetic biosensor for identification of transcriptional repressors of target promoters
نویسندگان
چکیده
Transcriptional repressors provide widespread biological significance in the regulation of gene expression. However, in prokaryotes, it is particularly difficult to find transcriptional repressors that recognize specific target promoters on genome-scale. To address this need, a genetic biosensor for identifying repressors of target promoters was developed in Escherichia coli from a de novo designed genetic circuit. This circuit can convert the negative input of repressors into positive output of reporters, thereby facilitating the selection and identification of repressors. After evaluating the sensitivity and bias, the biosensor was used to identify the repressors of scbA and aco promoters (PscbA and Paco), which control the transcription of signalling molecule synthase genes in Streptomyces coelicolor and Streptomyces avermitilis, respectively. Two previously unknown repressors of PscbA were identified from a library of TetR family regulators in S. coelicolor, and three novel repressors of Paco were identified from a genomic library of S. avermitilis. Further in vivo and in vitro experiments confirmed that these newly identified repressors attenuated the transcription of their target promoters by direct binding. Overall, the genetic biosensor developed here presents an innovative and powerful strategy that could be applied for identifying genome-wide unknown repressors of promoters in bacteria.
منابع مشابه
Use of transcriptional repressors to stabilize plasmid copy number of transcriptional fusion vectors.
Strong promoters cloned into transcriptional fusion vectors can adversely affect plasmid copy number. In this study, we investigated the use of transcriptional repressors, lacI and tetR, to stabilize the copy number of plasmids containing the lacUV5 and tetA promoters, respectively. Repression of these promoters was found to prevent plasmid copy number variation. Transcriptional strength of the...
متن کاملThe WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain.
Hairy-related proteins include the Drosophila Hairy and Enhancer of Split proteins and mammalian Hes proteins. These proteins are basic helix-loop-helix (bHLH) transcriptional repressors that control cell fate decisions such as neurogenesis or myogenesis in both Drosophila melanogaster and mammals. Hairy-related proteins are site-specific DNA-binding proteins defined by the presence of both a r...
متن کاملHistone acetylation at promoters is differentially affected by specific activators and repressors.
We analyzed the relationship between histone acetylation and transcriptional regulation at 40 Saccharomyces cerevisiae promoters that respond to specific activators and repressors. In accord with the general correlation between histone acetylation and transcriptional activity, Gcn4 and the general stress activators (Msn2 and Msn4) cause increased acetylation of histones H3 and H4. Surprisingly,...
متن کاملDelta–Notch—and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors
Hes and Hey genes are the mammalian counterparts of the Hairy and Enhancer-of-split type of genes in Drosophila and they represent the primary targets of the Delta-Notch signaling pathway. Hairy-related factors control multiple steps of embryonic development and misregulation is associated with various defects. Hes and Hey genes (also called Hesr, Chf, Hrt, Herp or gridlock) encode transcriptio...
متن کاملUncovering cis Regulatory Codes Using Synthetic Promoter Shuffling
Revealing the spectrum of combinatorial regulation of transcription at individual promoters is essential for understanding the complex structure of biological networks. However, the computations represented by the integration of various molecular signals at complex promoters are difficult to decipher in the absence of simple cis regulatory codes. Here we synthetically shuffle the regulatory arc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015